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ABSTRACT 
 
 Over the past three decades, significant progress has 
been made in the area of high-efficiency multijunction solar 
cells, with the effort primarily directed at current-matched 
solar cells in tandem. The key materials issues here have 
been obtaining semiconductors with the required bandgaps 
for sequential absorption of light in the solar spectrum and 
that are lattice matched to readily available substrates. The 
GaInP/GaAs/Ge cell is a striking example of success 
achieved in this area. Recently, several new approaches for 
high-efficiency solar cell design have emerged, that involve 
novel methods for tailoring alloy bandgaps, as well as 
alternate technologies for hetero-epitaxy of III-V's on Si. 
The advantages and difficulties expected to be encountered 
with each approach will be discussed, addressing both the 
materials issues and device physics whilst contrasting them 
with other fourth-generation solar cell concepts. 
 
1. Objectives 
 The phenomenon of giant bandgap “bowing” that has 
recently been observed in several III-V dilute nitride alloys 
offers the exciting promise of increasing the flexibility in 
choice of semiconductor bandgaps available with specified 
lattice constants. However, the poor solubility of nitrogen 
and the degradation of electrical transport properties that 
these materials exhibit seriously limit their usefulness. 
Novel ideas for overcoming these limitations are discussed 
below. 
 
2. Technical Approach 
 The solubility of an acceptor (donor) impurity can be 
significantly increased using the method of simultaneous co-
doping with a donor (acceptor). Using this approach, it has 
been possible to increase the doping concentrations of As 
donors and Ga acceptors in Si by almost 3 orders of 
magnitude [1]. This motivates the use of a similar strategy 
for overcoming the limitations of isoelectronic doping 
encountered with N in GaAs and in GaP. Bismuth is the 
heaviest element of the III-V semiconductor family. Like N, 
the size and core electronic structure of Bi are significantly 
different from those of P and As. It is therefore reasonable 
to expect that Bi could also behave as an isoelectronic 
impurity in some III-V semiconductors and show unusual 
alloy properties.  Bi indeed forms pseudo-donor bound 
states in GaP located above the valence-band maximum [2]. 
Although it has been predicted theoretically that the isolated 
Bi impurity does not form a bound state in GaAs, it yet 
remains to be investigated experimentally [3,4]. Even if 
isolated Bi does not form a bound state (like N in GaAs), 

the perturbation produced by the Bi localized potential and 
the surrounding lattice relaxation could significantly perturb 
the electronic band structure of GaAs and induce a variety 
of effects qualitatively resembling those observed for 
GaAs:N. Being complementary in size and potential, Bi and 
N could compensate for the strong local perturbation each 
introduces, which is detrimental to carrier mobility, while 
preserving other desirable effects such as the strong bowing 
of the bandgap. Also, simultaneous N and Bi doping allows 
one to reduce the bandgap energy at a fixed lattice constant. 
Thus, Bi and N co-doping is of interest for exploring the 
possibility of enhancing the solubility of the individual 
isoelectronic dopants, significantly lowering the bandgap of 
GaP and sharpening the absorption edge as compared to the 
soft edge that is obtained by doping with N alone. 
 
3. Results and Accomplishments 

GaAsBi layers between 0.2 and 0.3 mm thick were 
grown using molecular-beam epitaxy. Details on the growth 
conditions can be found in Ref. [5]. The Bi concentration 
was determined from Rutherford back scattering [5]. X-ray 
diffraction asymmetrical maps revealed that most of the 
samples were almost completely strained to match the GaAs 
in-plane lattice constant. Modulated electroreflectance was 
used to measure the energy of the optical transitions in the 
vicinity of the fundamental bandgap of GaAsBi. The 
linearized dependence of the bandgap transition energy with 
respect to the bandgap of GaAs is -88 meV/% Bi, which is 
close to half that for GaAsN; but relative to the strain 
induced by the isoelectronic dopant, these values are 
comparable. Isoelectronically co-doping N and Bi in GaAs 
should result in significantly larger bandgap reductions 
whilst allowing for counterbalancing the lattice-mismatch 
strain. In the case of GaP, the direct-bandgap characteristics 
of the heavily isoelectronically co-doped material, combined 
with the ability to grow GaP:N:Bi epitaxially on Si 
substrates, would introduce exciting possibilities for use of 
this material in fabricating photonic devices such as solar 
cells, light-emitting diodes, and lasers. These features are of 
value for designing semiconductor alloys for use in 
multijunction solar cells. One example of this is the 
quadruple-junction GaInP/GaAs/GaAsNBi/Ge solar cell. In 
this case, it is hoped that simultaneous codoping of GaAs 
with both N and Bi should lead to a larger band gap 
lowering with a smaller amount of Nitrogen whilst 
concomitantly permitting the lattice mismatch strain to be 
eliminated. It is expected that such cells should be 
theoretically capable of achieving efficiencies exceeding 
40%. Another example is the GaPNBi/Si solar cell in Fig. 1. 
Here, isoelectronic co-doping makes  it  possible  to  grow  a  
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Fig.1.  GaPNBi/Si solar cell. 
 

lattice-matched III-V semiconductor alloy with an optimal 
bandgap and strong absorption coefficient on inexpensive 
silicon substrates. The monolithic structure can be tailored 
close to the ideal requirements for a two-junction cell. 
 An alternative approach to get around the difficulty of 
synthesizing monolithic tandem cells with silicon serving as 
a substrate and bottom cell is to use the compliant-
superstrate technique developed by Motorola [6-8]. A 
roughly 140-Å-thick epitaxial film of strontium titanate 
(SrTiO3), henceforth referred to as STO, is grown on a (001) 
Si substrate using molecular-beam epitaxy. The film grows 
with the [110] edge of the perovskite-oxide aligned along 
the [100] cubic edge of Si whereby the 1.7% size-mismatch 
between the substrate and the film is accommodated 
elastically. Because its thickness is below the critical-
thickness limit, the STO film is of high quality. A roughly 
8-Å-thick layer of SiO2 is observed to inadvertently exist 
between the STO/Si interface. GaAs has a cubic lattice that 
is 4% larger than that of Si. Because SiO2 has a 
noncrystalline structure typical of a glass, it yields to any 
external strain at the growth temperature for GaAs. When a 
thick GaAs epitaxial layer is grown on the 140-Å thin STO 
layer, the STO layer elastically adjusts to the 2.3% larger 
GaAs lattice, with the SiO2 layer accommodating itself to 
the mismatch between the STO and the SiO2 layer. This 
enables epitaxial growth of high-quality GaAs on Si 
substrates. An advantage of the Si/SiO2/STO superstrate is 
that it allows for the growth of III-V semiconductor alloys 
on a superstrate with a flexible lattice constant that can be 
easily adjusted anywhere between that of Si and that of 
GaAs. It allows for solar cell configurations to be optimized 
by designing the subcells from alloys with bandgaps that are 
closer to the ideal for two- and three-junction tandem solar 
cell structures [9]. An example of this is the 
GaInP/GaAsP/Si solar cell illustrated in Fig. 2 [10]. 
 
4. Conclusions  
 Si is far more abundantly available and its substrates 
are cheaper and more environmentally benign than GaAs 
substrates. Si also has greater mechanical strength and  
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Fig. 2.  GaInP/GaAsP/Si solar cell 
 
thermal conductivity than GaAs. The isoelectronic co-
doping approach or the compliant-substrate approach for Si-
based high-efficiency photovoltaics are far more realistic in 
terms of near-term success than other fourth-generation 
concepts. 
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